#### 14) Ion exchange chromatography is based on the

- a. Electrical mobility of ionic species
- b. Adsorption chromatography

c. Electrostatic attraction

- d. Partition chromatography
- 15) Which type of liquid chromatography separation depends on interactions between solute, mobile phase, and immobilized liquid stationary phase?
  - (a) Adsorption.

(b) Partition.

(c) lon-exchange.

(d) Size exclusion.

#### 16) Sample retention in the column is measured by

a) Retention time

b) Retention factor

c) Retention index

d) All of these

# 17) Capillary columns are sometimes preferred in gas chromatography over packed columns because they

- (a) Have higher resolving power.
- (b) Are easier to prepare in the laboratory.
- (c) Prevent detector overloading.
- (d) Permit easier injection.

#### 18) Normal-phase liquid chromatography refers to

- a) The use of a nonpolar solvent as the eluent in HPLC.
- b) The use of a polar material as the stationary phase in a chromatographic column.
- c) The use of a nonpolar material as the stationary phase in a chromatographic column.

### 19) What is the function of the detector in HPLC?

- a. It detects disturbances in the current.
- b. It detects stray light.
- c. It detects the molecules coming out from the column.
- d. It detects leakage.

### 20) What is the function of the GC injector?

- a. It injects the sample solution into the HPLC system.
- b. It injects energy into the column to facilitate the separation.
- c. It injects light into the detector.
- d. It injects liquid into the reservoir.

\* Good luck \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Examiner: Prof. Dr. Ahmed Rehab, and Prof. Dr. Mohamed Hany







# Tanta University - Faculty of Science - Chemistry Department Final Exam of "Instrumental 2"

#### For Third Level students (Material Science Section)

Course Code: CH 3119

Total assessment marks: 100

Date: 15/ 1 / 2018 - Time Allowed: 2h

## **Answer the following Questions**

| Question 1): Write on three only of the following:  | (20 mark)      |
|-----------------------------------------------------|----------------|
| 1) Definition and determination of ion exchange ca  | pacity.        |
| 2) Analytical Applications of ion exchange chromat  | ography.       |
| 3) Properties of eluent and stationary phase used i | n HPLC.        |
| 4) Frontal Development.                             |                |
| ***********************                             | ******         |
| Question 2): Compare between the following:         | (20 mark)      |
| 1) Columns and pacing material in HPLC and GC.      |                |
| 2) Normal and reverse phase chromatography.         |                |
| 3) lon exchange and gel chromatography.             |                |
| ***********************                             | ******         |
| Question 3):                                        | (20 mark)      |
| 1) What are the acceptable properties of eluent an  | d stationary   |
| phase used in Ion exchange and gel chromatog        | raphy?         |
| 2) Mention the factors affecting gas chromatograph  | ny and explain |
| three of them.                                      |                |
|                                                     |                |



#### TANTA UNIVERSITY **FACULTY OF SCIENCE** DEPARTMENT OF PHYSICS

EXAMINATION FOR FRESHMEN (THIRD YEAR) STUDENTS OF PHYSICS &M.SCIENCE

فبزياء حاسوبية COMPUTIONAL PHYSICS

COURSE CODE:PH3181

TERM

TERM: FIRST TOTAL ASSESSMENT MARKS: 100

#### Answer The Following Questions:

#### First Question:

(25 mark)

- a) Construct a flowchart to read two numbers X and Y and print out which number is larger.
- b) Draw a flowchart to determine if a point (x, y) lies within a circle of radius, r, centered at the origin. Use the condition that if  $(x^2 + y^2)^{1/2} < r$ , then the point is within the circle. If the point lies within the circle, print out a message and the distance, z, of that point from the center of the circle.

#### **Second Ouestion:**

- a) Write short notes about unconditional and conditional transfer statements in Fortran language and state an example for each statement.
- b) By using mathematical If statement and formatted input and output write a FORTRAN program to compute the values of the variable, a, which is given by:

$$\begin{cases} a = 5 b + 2 c & \text{if} & L < 0 \\ a = (\sin(c) / \tan(b)) & \text{if} & L = 0 \\ a = 3 b^2 + 7 & \text{if} & L > 0 \end{cases}$$

#### Third Question:

(25 mark)

- a) State the general form of the counted DO loop and write down its rules.
- b) Write a program to compute the value of, a, given by the following series:

c) Write a program to print out the odd numbers from 1 to 100.

## Fourth question:

(25 mark)

- a) By using MATHEMATICAL GO TO and formatted input and output write a Fortran program to read the value of the nshape and calculate the following:
  - ·i) The area and perimeter of a rectangle if nshape = 1ii) - The area and perimeter of a square. if nshape = 2iii) -  $x = v^2 + z^2$ nshape = 3if iv) - a = b | cos(c)|if nshape = 4
- b) Using nested DO loop write a program to print out the values of the variable X, which is given by the formula  $X = b^3 + 6c^4 + 5d^2$  for the values of, b, c and d between -5 and 5 in increment of 0.1

**EXAMINERS** PROF.DR. G.A.GABALLA



لية العلوم - جامعة طنطا 🔊 U QUALITY ASSURANCE UNIT FACULTY OF SCIENCE - TU

| 7,653,97 | TANTA UNIVERSITY- FACULTY OF SCIENCE - DEPARTMENT OF PHYSICS |             |                             |                       |  |  |  |
|----------|--------------------------------------------------------------|-------------|-----------------------------|-----------------------|--|--|--|
|          | EXAMINATION FOR THIRD LEVEL STUDENTS OF MATERIAL SCIENCE     |             |                             |                       |  |  |  |
| 1969     | COURSE TITLE:                                                | SOL         | COURSE CODE :PH3161         |                       |  |  |  |
| DATE:    | 24,DECEMBER, 2017                                            | TERM :FIRST | TOTAL ASSESSMENT MARKS: 100 | TIME ALLOWED :2 HOURS |  |  |  |

## ANSWER THE FOLLOWING QUESTIONS:

## **First Question**

- a) Name the seven types of crystal systems and give the relation of lengths of axes and the relation of angles between the axes of each type. (13 marks)
- b) Describe briefly the powder photograph.

(12 marks)

## **Second Question**

- a) In a cubic unit cell draw the planes (111), (202), (432) and (100). Calculate the inter planer distances for these planers if a=3.5 A<sup>o</sup> . (13 marks)
- b) Discuss in details the inter atomic forces in crystals.

(12 marks)

## **Third Question**

- a) Derive an expression for the determination of unit cell dimensions of a rectangular unit cell. (13 marks)
- b) Prove that the Fermi energy E<sub>o</sub> in an intrinsic semiconductor lies half way between the top of the valence band and the bottom of the conduction band.

  (12 marks)

## **Fourth Question**

Discuss in details the free electron model in a metal and derive an expression for the energy level in three dimensions. (25 marks)



|         |                                                                           |                                   | DEPARTMENT OF FITTS 100     | <u>an al-2</u>        |  |
|---------|---------------------------------------------------------------------------|-----------------------------------|-----------------------------|-----------------------|--|
|         | FINAL EXAMINATION FOR FRESHMEN (THIRD LEVEL) STUDENTS OF MATERIAL SCIENCE |                                   |                             |                       |  |
|         | COURSE TITLE:                                                             | Atomic And molecular spectroscopy |                             | COURSE CODE:MS3121    |  |
| DATE:28 | DEC. 2017                                                                 | TERM: FIRST                       | TOTAL ASSESSMENT MARKS: 100 | TIME ALLOWED: 2 HOURS |  |

Answer the following questions:

1) a- Give a <u>definition</u> of the following: (20 mark)
De Broglie Hypothesis – Hamiltonian – Bremsstrahlung –
Positronium – electron spin.

b- compare between the two processes pair production and pair annihilation. (10 mark)

- 2) give short note about:
  - a- Rutherford scattering experiment. (10 mark)
  - b- The quantum numbers n, l, m<sub>l</sub>. (10 mark)
- 3) A- Compare between the transition series of hydrogen and doubly ionized helium atoms. (10 mark)
  - b- Write the <u>formula</u> of the following: Rydberg constant, reduced mass, Bohr magneton, Summerfield fine structure constant. (20 mark).
- 4) A- <u>Draw</u> the complete wavelength and frequency chart of electromagnetic spectrum as is it now known diagram. (5 mark)
  - b- Classify the spectra into groups. (5 mark)
  - c- give short notes about only one of later groups. (5 mark)
  - d- <u>Discuss</u> briefly about <u>only one</u> of light sources. (5 mark)

Good luck

Examiner Dr. Nagwa M. Abdel-Moniem



|       |               |                                                                 | TANTAUNIVERSITY<br>FACULTY OF SCIENCE<br>DEPARTMENT OF PHYSICS |                       |
|-------|---------------|-----------------------------------------------------------------|----------------------------------------------------------------|-----------------------|
|       |               | EXAMINATION of (Third Level) students of Material Science group |                                                                |                       |
| 1960  | COURSE TITLE: | Solar Energy Con                                                | version Devices1                                               | COURSE CODE: MS3111   |
| DATE: | 4/1/2018      | TERM:JANUARY 2018                                               | TOTAL ASSESSMENT MARKS: 100                                    | TIME ALLOWED: 2 HOURS |

#### Answer the following questions

#### First question (25 marks)

- a) Discuss the construction, basic principles of flat plate collectors with single glass and describe the various mechanisms of heat transfer happening between different layers. (15 marks)
- b) Write in brief about the various components of solar radiation incident on the earth surface and derive an expression for the total solar radiation incident on a tilted surface. (10 marks)

### Second question (25 marks)

- a) Discuss the various factors affecting the single basin solar still performance. (10 marks)
- b) Write about different types of solar dryers and give mathematical formula for the main drying parameters. (15 marks)

#### Third questions (25 marks)

- a) Write expressions for the dimensionless numbers and explain how they can be used for calculation of the convective heat transfer coefficient. (15 marks)
- b) Discuss briefly different families of phase change materials (PCMs) and mention the criterias required for selection of the PCMs. (10 marks)

## Fourth questions (25 marks)

- a) Define and give units for the following quantities (10 marks):

  Solar constant; daily productivity; Thermal diffusivity, absorbitivity
- b) Discuss the procedures followed to evaluate the solar cooker performance. (15 marks)

Examiner: Prof. Ahmed A. El-Sebaii

